Global Existence of Small Solutions to Quadratic Nonlinear Wave Equations in an Exterior Domain

研究成果: Article査読

14 被引用数 (Scopus)

抄録

We consider the initial boundary value problem for the nonlinear wave equation [formula] where □ = ∂2t − ΔB = (x : |x| = [formula] > R), ∂B = (x : |x| = R), u0, u1 are real valued functions ϵ0 is a sufficiently small positive constant. In this paper it is shown that small solutions to (*) exist globally in time when n = 4. Our method in this paper is applicable to the more general nonlinear wave equations such that □u = F(∂tu, ∂t ∂u, ∂2tu), where F is a quadratic nonlinearity in (∂tu, part;t ∂u, ∂2tu), ∂ = (∂1, ∂2, … , ∂n) and n ≥ 4.

本文言語English
ページ(範囲)302-344
ページ数43
ジャーナルJournal of Functional Analysis
131
2
DOI
出版ステータスPublished - 1995 8 1
外部発表はい

ASJC Scopus subject areas

  • 分析

フィンガープリント

「Global Existence of Small Solutions to Quadratic Nonlinear Wave Equations in an Exterior Domain」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル