Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity

Kentarou Fujie, Takasi Senba

研究成果: Article査読

38 被引用数 (Scopus)

抄録

This paper deals with positive radially symmetric solutions of the Neumann boundary value problem for the fully parabolic chemotaxis system, in a ball R ω R2 with general sensitivity function x v satisfying x> R 0 and decaying property x'(s) →0 (s→∞ ), parameter ( τ e (0, 1) and nonnegative radially symmetric initial data. It is shown that if (0, 1) is sufficiently small, then the problem has a unique classical radially symmetric solution, which exists globally and remains uniformly bounded in time. Especially, this result establishes global existence of solutions in the case x (v)= x0 log 0 for all x>0 0 , which has been left as an open problem.

本文言語English
ページ(範囲)2417-2450
ページ数34
ジャーナルNonlinearity
29
8
DOI
出版ステータスPublished - 2016 7 4
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学
  • 物理学および天文学(全般)
  • 応用数学

フィンガープリント

「Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル