Gevrey regularizing effect for the (generalized) Korteweg-de Vries equation and nonlinear Schrödinger equations

Anne De Bouard, Nakao Hayashi, Keiichi Kato

研究成果: Article査読

45 被引用数 (Scopus)

抄録

This paper is concerned with regularizing effects of solutions to the (generalized) Korteweg-de Vries equation {∂tu+∂x 3u=λup−1xu,(t,x)∈ℝ×ℝ,u(0)=ϕ,x∈ℝ, and nonlinear Schrödinger equations in one space dimension {i∂tu+12∂x 2u=G(u,u¯),(t,x)∈ℝ×ℝ,u(0)=ψ,x∈ℝ, where p is an integer satisfying p ≥ 2, λ ∊ ℂ and G is a polynomial of (u,u¯). We prove that if the initial function ϕ is in a Gevrey class of order 3 defined in Section 1, then there exists a positive time T such that the solution of (gKdV) is analytic in space variable for t ∊ [−T, T]\{0}, and if the initial function ψ in a Gevrey class of order 2, then there exists a positive time T such that the solution of (NLS) is analytic in space variable for t ∊ [−T, T]\{0}.

本文言語English
ページ(範囲)673-725
ページ数53
ジャーナルAnnales de l'Institut Henri Poincare (C) Analyse Non Lineaire
12
6
DOI
出版ステータスPublished - 1995 11 1
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 数理物理学
  • 応用数学

フィンガープリント

「Gevrey regularizing effect for the (generalized) Korteweg-de Vries equation and nonlinear Schrödinger equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル