Geometric Biplane Graphs I: Maximal Graphs

Alfredo García, Ferran Hurtado, Matias Korman, Inês Matos, Maria Saumell, Rodrigo I. Silveira, Javier Tejel, Csaba D. Tóth

研究成果: Article査読

2 被引用数 (Scopus)

抄録

We study biplane graphs drawn on a finite planar point set S in general position. This is the family of geometric graphs whose vertex set is S and can be decomposed into two plane graphs. We show that two maximal biplane graphs—in the sense that no edge can be added while staying biplane—may differ in the number of edges, and we provide an efficient algorithm for adding edges to a biplane graph to make it maximal. We also study extremal properties of maximal biplane graphs such as the maximum number of edges and the largest maximum connectivity over n-element point sets.

本文言語English
ページ(範囲)407-425
ページ数19
ジャーナルGraphs and Combinatorics
31
2
DOI
出版ステータスPublished - 2015 3月 1
外部発表はい

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 離散数学と組合せ数学

フィンガープリント

「Geometric Biplane Graphs I: Maximal Graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル