Geodesic order types

Oswin Aichholzer, Matias Korman, Alexander Pilz, Birgit Vogtenhuber

研究成果: Conference article査読

5 被引用数 (Scopus)

抄録

The geodesic between two points a and b in the interior of a simple polygon P is the shortest polygonal path inside P that connects a to b. It is thus the natural generalization of straight line segments on unconstrained point sets to polygonal environments. In this paper we use this extension to generalize the concept of the order type of a set of points in the Euclidean plane to geodesic order types. In particular, we show that, for any set S of points and an ordered subset B ⊆ S of at least four points, one can always construct a polygon P such that the points of B define the geodesic hull of S w.r.t. P, in the specified order. Moreover, we show that an abstract order type derived from the dual of the Pappus arrangement can be realized as a geodesic order type.

本文言語English
ページ(範囲)216-227
ページ数12
ジャーナルLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
7434 LNCS
DOI
出版ステータスPublished - 2012
外部発表はい
イベント18th Annual International Computing and Combinatorics Conference, COCOON 2012 - Sydney, NSW, Australia
継続期間: 2012 8 202012 8 22

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Geodesic order types」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル