Generalized rainbow connectivity of graphs

Kei Uchizawa, Takanori Aoki, Takehiro Ito, Xiao Zhou

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

Let C = {c1, c2, ..., ck} be a set of k colors, and let ℓ = (ℓ1, ℓ2, ..., ℓk) be a k-tuple of nonnegative integers ℓ1, ℓ2, ..., ℓk. For a graph G = (V,E), let f: E → C be an edge-coloring of G in which two adjacent edges may have the same color. Then, the graph G edge-colored by f is ℓ-rainbow connected if every two vertices of G have a path P such that the number of edges in P that are colored with cj is at most ℓj for each index j ∈{1,2,..., k}. Given a k-tuple ℓ and an edge-colored graph, we study the problem of determining whether the edge-colored graph is ℓ-rainbow connected. In this paper, we characterize the computational complexity of the problem with regards to certain graph classes: the problem is NP-complete even for cacti, while is solvable in polynomial time for trees. We then give an FPT algorithm for general graphs when parameterized by both k and ℓmax = max{ℓj | 1 ≤ j ≤ k}.

本文言語English
ホスト出版物のタイトルWALCOM
ホスト出版物のサブタイトルAlgorithms and Computation - 7th International Workshop, WALCOM 2013, Proceedings
ページ233-244
ページ数12
DOI
出版ステータスPublished - 2013
イベント7th International Workshop on Algorithms and Computation, WALCOM 2013 - Kharagpur, India
継続期間: 2013 2 142013 2 16

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
7748 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Other

Other7th International Workshop on Algorithms and Computation, WALCOM 2013
国/地域India
CityKharagpur
Period13/2/1413/2/16

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Generalized rainbow connectivity of graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル