Gcd modulo a primary triangular set of dimension zero

研究成果: Conference contribution

3 被引用数 (Scopus)

抄録

Computing gcd over a triangular set T is the core routine of the machinery of some triangular decomposition methods, in the realm of polynomial ideal theory. As such it has been studied intensively and is well-understood and implemented in several situations, especially in the case where coefficients are over a radical triangular set; It is not the case over a non-radical one. This paper introduces a gcd notion in this case, when additionally for simplicity 〈T〉 is assumed to be primary. It is built upon the Henselian property of the coefficient ring, and is natural in that it is linked with the subresultant sequence of a and b modulo T. A general algorithm still relies on some assumptions, except for the case of a triangular set T = (T1)x1)) of one variable.

本文言語English
ホスト出版物のタイトルISSAC 2017 - Proceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation
編集者Michael Burr
出版社Association for Computing Machinery
ページ109-116
ページ数8
ISBN(電子版)9781450350648
DOI
出版ステータスPublished - 2017 7 23
外部発表はい
イベント42nd ACM International Symposium on Symbolic and Algebraic Computation, ISSAC 2017 - Kaiserslautern, Germany
継続期間: 2017 7 252017 7 28

出版物シリーズ

名前Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC
Part F129312

Conference

Conference42nd ACM International Symposium on Symbolic and Algebraic Computation, ISSAC 2017
国/地域Germany
CityKaiserslautern
Period17/7/2517/7/28

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Gcd modulo a primary triangular set of dimension zero」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル