Functional diversity of xyloglucan-related proteins and its implications in the cell wall dynamics in plants

Ryusuke Yokoyama, Kazuhiko Nishitani

研究成果: Review article査読

32 被引用数 (Scopus)


The plant cell wall is a dynamic apparatus responsible for both morphogenesis and responsiveness to environmental conditions. In the cell wall of most seed plants, cellulose microfibrils are cross-linked by xyloglucans to form a cellulose/xyloglucan framework, which functions as the mechanical underpinning of the cell wall. Endoxyloglucan transferases are a class of enzymes that play a central role in construction and modification of the plant cell wall. These enzymes are encoded by a large multi-gene family termed xyloglucan-related proteins (XRPs). More than 24 members of the XRP family have so far been identified in Arabidopsis thaliana. Each member of this family functions as either a hydrolase or a transferase acting on xyloglucans. The primary structures of proteins and gene-expression profiles have strongly suggested their potentially divergent roles in plant morphogenesis: Different members of this family are expressed in different types of tissues at distinct developmental stages and respond differentially to individual hormones as well as environmental stimuli. These facts imply that each member of this gene family is individually committed to a specific process that proceeds in a specific tissue at a specific stage of development. Probably the generation and maintenance of the cell walls in a whole organ, and thus in the whole plant, is achieved by the ensemble of individual members of the XRP family.

ジャーナルPlant Biology
出版ステータスPublished - 2000 12月 1

ASJC Scopus subject areas

  • 生態、進化、行動および分類学
  • 植物科学


「Functional diversity of xyloglucan-related proteins and its implications in the cell wall dynamics in plants」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。