TY - JOUR
T1 - Functional diversity of C2 domains of synaptotagmin family
T2 - Mutational analysis of inositol high polyphosphate binding domain
AU - Fukuda, Mitsunori
AU - Kojima, Toshio
AU - Aruga, Jun
AU - Niinobe, Michio
AU - Mikoshiba, Katsuhiko
PY - 1995/11/3
Y1 - 1995/11/3
N2 - Synaptotagmins I and II are inositol high polyphosphate series (inositol 1,3,4,5-tetrakisphosphate (IP4), inositol 1,3,4,5,6-pentakisphosphate, and inositol 1,2,3,4,5,6-hexakisphosphate) binding proteins, which are thought to be essential for Ca2+-regulated exocytosis of neurosecretory vesicles. In this study, we analyzed the inositol high polyphosphate series binding site in the C2B domain by site-directed mutagenesis and compared the IP4 binding properties of the C2B domains of multiple synaptotagmins (II-IV). The IP4 binding domain of synaptotagmin II is characterized by a cluster of highly conserved, positively charged amino acids (321 GKRLKKKKTTVKKK 324). Among these, three lysine residues, at positions 327, 328, and 332 in the middle of the C2B domain, which is not conserved in the C2A domain, were found to be essential for IP4 binding in synaptotagmin II. When these lysine residues were altered to glutamine, the IP4 binding ability was completely abolished. The primary structures of the IP4 binding sites are highly conserved among synaptotagmins I through IV. However, synaptotagmin III did not show significant binding ability, which may be due to steric hindrance by the C-terminal flanking region. These functional diversities of C2B domains suggest that not all synaptotagmins function as inositol high polyphosphate sensors at the synaptic vesicle.
AB - Synaptotagmins I and II are inositol high polyphosphate series (inositol 1,3,4,5-tetrakisphosphate (IP4), inositol 1,3,4,5,6-pentakisphosphate, and inositol 1,2,3,4,5,6-hexakisphosphate) binding proteins, which are thought to be essential for Ca2+-regulated exocytosis of neurosecretory vesicles. In this study, we analyzed the inositol high polyphosphate series binding site in the C2B domain by site-directed mutagenesis and compared the IP4 binding properties of the C2B domains of multiple synaptotagmins (II-IV). The IP4 binding domain of synaptotagmin II is characterized by a cluster of highly conserved, positively charged amino acids (321 GKRLKKKKTTVKKK 324). Among these, three lysine residues, at positions 327, 328, and 332 in the middle of the C2B domain, which is not conserved in the C2A domain, were found to be essential for IP4 binding in synaptotagmin II. When these lysine residues were altered to glutamine, the IP4 binding ability was completely abolished. The primary structures of the IP4 binding sites are highly conserved among synaptotagmins I through IV. However, synaptotagmin III did not show significant binding ability, which may be due to steric hindrance by the C-terminal flanking region. These functional diversities of C2B domains suggest that not all synaptotagmins function as inositol high polyphosphate sensors at the synaptic vesicle.
UR - http://www.scopus.com/inward/record.url?scp=0028859443&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028859443&partnerID=8YFLogxK
U2 - 10.1074/jbc.270.44.26523
DO - 10.1074/jbc.270.44.26523
M3 - Article
C2 - 7592870
AN - SCOPUS:0028859443
VL - 270
SP - 26523
EP - 26527
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 44
ER -