Foundations of calculus on super euclidean space rm|n based on a Frechet-Grassmann algebra

Atsushi Inoue, Yoshiaki Maeda

研究成果: Article査読

12 被引用数 (Scopus)

抄録

We define a Frechet-Grassmann algebra with infinitely many generators as the supernumber algebra. Using this, we define a so-called super Euclidean space and may develop elementary analysis on it. In doing this, we clarify the relation between Grassmann generators and odd variables. Moreover, we construct a certain Hamilton flow on the super Euclidean space, corresponding to the ‘classical’ orbit of the Pauli equation, for which we define the action integral, van Vleck determinant etc. as similar as we do on the Euclidean space.

本文言語English
ページ(範囲)72-112
ページ数41
ジャーナルKodai Mathematical Journal
14
1
DOI
出版ステータスPublished - 1991 3月
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Foundations of calculus on super euclidean space rm|n based on a Frechet-Grassmann algebra」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル