Formal Design of Galois-Field Arithmetic Circuits Based on Polynomial Ring Representation

Rei Ueno, Naofumi Homma, Yukihiro Sugawara, Takafumi Aoki

研究成果: Conference contribution

5 被引用数 (Scopus)

抄録

This paper presents a graph-based approach to designing arithmetic circuits over Galois fields (GFs) based on a polynomial ring (PR) representation, which is a redundant representation for GF arithmetic. The proposed method extends a graph-based circuit description, called a Galois-field arithmetic circuit graph (GF-ACG), which was originally proposed for no redundant GF arithmetic. First, the extension of a GF-ACG is applied to the design and verification of the PR-based GFarithmetic circuits. Then the efficiency of the proposed method is demonstrated using the design and verification of PR-based GF multipliers. In addition, GF(28) inversion circuits with differentGF representations are designed and evaluated in order to confirm the significance of the PR representation.

本文言語English
ホスト出版物のタイトルProceedings - 2015 IEEE 45th International Symposium on Multiple-Valued Logic, ISMVL 2015
出版社IEEE Computer Society
ページ48-53
ページ数6
ISBN(電子版)9781479917778
DOI
出版ステータスPublished - 2015 9 2
イベント45th IEEE International Symposium on Multiple-Valued Logic, ISMVL 2015 - Waterloo, Canada
継続期間: 2015 5 182015 5 20

出版物シリーズ

名前Proceedings of The International Symposium on Multiple-Valued Logic
2015-September
ISSN(印刷版)0195-623X

Other

Other45th IEEE International Symposium on Multiple-Valued Logic, ISMVL 2015
国/地域Canada
CityWaterloo
Period15/5/1815/5/20

ASJC Scopus subject areas

  • コンピュータ サイエンス(全般)
  • 数学 (全般)

フィンガープリント

「Formal Design of Galois-Field Arithmetic Circuits Based on Polynomial Ring Representation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル