Formal design of arithmetic circuits over galois fields based on normal basis representations

Kotaro Okamoto, Naofumi Homma, Takafumi Aoki

研究成果: Article査読

1 被引用数 (Scopus)


This paper presents a graph-based approach to designing arithmetic circuits over Galois fields (GFs) using normal basis representations. The proposed method is based on a graph-based circuit description called Galois-field Arithmetic Circuit Graph (GF-ACG). First, we extend GF-ACG representation to describe GFs defined by normal basis in addition to polynomial basis. We then apply the extended design method to Massey-Omura parallel multipliers which are well known as typical multipliers based on normal basis. We present the formal description of the multipliers in a hierarchical manner and show that the verification time can be greatly reduced in comparison with those of the conventional techniques. In addition, we design GF exponentiation circuits consisting of the Massey-Omura parallel multipliers and an inversion circuit over composite field GF(((22)2)2) in order to demonstrate the advantages of normal-basis circuits over polynomial-basis ones.

ジャーナルIEICE Transactions on Information and Systems
出版ステータスPublished - 2014 9月

ASJC Scopus subject areas

  • ソフトウェア
  • ハードウェアとアーキテクチャ
  • コンピュータ ビジョンおよびパターン認識
  • 電子工学および電気工学
  • 人工知能


「Formal design of arithmetic circuits over galois fields based on normal basis representations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。