Force Estimation on the Contact of Poly(l, l -lactide) and Poly(d, d -lactide) Surfaces Regarding Stereocomplex Formation

Hiroharu Ajiro, Shun Takahama, Masashi Mizukami, Kai Kan, Mitsuru Akashi, Kazue Kurihara

研究成果: Article査読

5 被引用数 (Scopus)


The stereocomplex formation of poly(l,l-lactide) (PLLA) and poly(d,d-lactide) (PDLA) was selected in order to investigate the interaction of the two surfaces including hydrogen bonding and van der Waals interaction. Adhesion force measurement using surface force apparatus (SFA) equipped with an optical microscope was conducted on the PLLA and PDLA spin-coated films. The adhesion forces, Fad, phenomenologically followed the linear relation with the applied normal load, L. For the force Fad between PLLA and PDLA films with low molecular weights (PLLA, Mn = 2800; PDLA,: Mn = 2100), the slope of linear fitting of Fad vs L was significantly larger for the heterointerface (PLLA/PLDA) compared with that for the homointerface (PLLA/PLLA and PDLA/PDLA). However, when polymers with higher molecular weights (PLLA, Mn = 8500; PDLA, Mn = 8300) were measured, the slopes of linear fitting lines were almost the same for hetero- and homointerfaces. This indicated that the mobility of the lower molecular weight PLLA/PDLA films promoted the selective interaction of PLLA and PDLA under the applied normal loads. The adhesion between the outermost PLLA layer and PDLA layer prepared by layer-by-layer (LbL) assembly was also measured. It is interesting that the adhesion force was very weak in this case. This weak adhesion could be explained by the much less mobility of the polymer chain due to the stereocomplex formation within the LbL layers. This study demonstrated that the adhesion force due to the selective interaction of PLLA and PDLA between PLLA/PDLA films could be directly measured, and depended on the mobility of the outermost polymer chains, which reflected the different structures of polymer chains in the organized complex films.

出版ステータスPublished - 2016 9 20

ASJC Scopus subject areas

  • 材料科学(全般)
  • 凝縮系物理学
  • 表面および界面
  • 分光学
  • 電気化学


「Force Estimation on the Contact of Poly(l, l -lactide) and Poly(d, d -lactide) Surfaces Regarding Stereocomplex Formation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。