Fluctuation of Rac1 activity is associated with the phenotypic and transcriptional heterogeneity of glioma cells

Hiroko Yukinaga, Clara Shionyu, Eishu Hirata, Kumiko Ui-Tei, Takeshi Nagashima, Shinji Kondo, Mariko Okada-Hatakeyama, Honda Naoki, Michiyuki Matsuda

研究成果: Article査読

14 被引用数 (Scopus)


Phenotypic heterogeneity of cancer cells is caused not only by genetic and epigenetic alterations but also by stochastic variation of intracellular signaling molecules. Using cells that stably express Förster resonance energy transfer (FRET) biosensors, we show here a correlation between a temporal fluctuation in the activity of Rac1 and the invasive properties of C6 glioma cells. By using longterm time-lapse imaging, we found that Rac1 activity in C6 glioma cells fluctuated over a timescale that was substantially longer than that of the replication cycle. Because the relative level of Rac1 activity in each cell was unaffected by a suspension-adhesion procedure, we were able to sort C6 glioma cells according to the levels of Rac1 activity, yielding Rac1high and Rac1low cells. The Rac1high cells invaded more efficiently than did Rac1low cells in a Matrigel invasion assay. We assessed the transcriptional profiles of Rac1high and Rac1low cells and performed gene ontology analysis. Among the 14 genes that were most associated with the term 'membrane' (membrane-related genes) in Rac1high cells, we identified four genes that were associated with glioma invasion and Rac1 activity by using siRNA knockdown experiments. Among the transcription factors upregulated in Rac1high cells, Egr2 was found to positively regulate expression of the four membranerelated invasion-associated genes. The identified signaling network might cause the fluctuations in Rac1 activity and the heterogeneity in the invasive capacity of glioma cells.

ジャーナルJournal of cell science
出版ステータスPublished - 2014

ASJC Scopus subject areas

  • 細胞生物学


「Fluctuation of Rac1 activity is associated with the phenotypic and transcriptional heterogeneity of glioma cells」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。