Flower patterns on honeycomb structures

Kiyohiro Ikeda, Kazuo Murota

研究成果: Chapter

抄録

Bifurcation mechanism of honeycomb structures is elucidated by the study of a that is the direct product of O(2) and two reflection group. A flower pattern is theoretically assessed to branch from a triple bifurcation point and is actually found by a numerical analysis of a honeycomb cellular solid. Other bifurcating patterns of interest are found in this study through the analysis of bifurcation points with the multiplicity of six and twelve. Fundamentals of group representation theory in Chap. 7 and group-theoretic bifurcation theory in Chap. 8 are foundations of this chapter.

本文言語English
ホスト出版物のタイトルApplied Mathematical Sciences (Switzerland)
出版社Springer
ページ503-546
ページ数44
DOI
出版ステータスPublished - 2019

出版物シリーズ

名前Applied Mathematical Sciences (Switzerland)
149
ISSN(印刷版)0066-5452
ISSN(電子版)2196-968X

ASJC Scopus subject areas

  • 応用数学

フィンガープリント

「Flower patterns on honeycomb structures」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル