Flag-Transitive 2-Designs Arising from Line-Spreads in PG(2n - 1, 2)

研究成果: Article査読

5 被引用数 (Scopus)

抄録

A Singer cycle in GL(n, q) is an element of order qn - 1 permuting cyclically all the nonzero vectors. Let σ be a Singer cycle in GL(2n, 2). In this note we shall count the number of lines in PG(2n - 1, 2) whose orbit under the subgroup of index 3 in the Singer group 〈σ〉 is a spread. The lines constituting such a spread are permuted cyclically by the group 〈σ3〉, hence gives rise to a flag-transitive 2-(22n, 4, 1) design.

本文言語English
ページ(範囲)209-213
ページ数5
ジャーナルGeometriae Dedicata
77
2
DOI
出版ステータスPublished - 1999 1 1
外部発表はい

ASJC Scopus subject areas

  • Geometry and Topology

フィンガープリント 「Flag-Transitive 2-Designs Arising from Line-Spreads in PG(2n - 1, 2)」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル