Fixed-parameter tractability of token jumping on planar graphs

Takehiro Ito, Marcin Kamiński, Hirotaka Ono

研究成果: Chapter

17 被引用数 (Scopus)

抄録

Suppose that we are given two independent sets I0 and Ir of a graph such that |I0| = |Ir|, and imagine that a token is placed on each vertex in I0. The token jumping problem is to determine whether there exists a sequence of independent sets of the same cardinality which transforms I0 into Ir so that each independent set in the sequence results from the previous one by moving exactly one token to another vertex. This problem is known to be PSPACE-complete even for planar graphs of maximum degree three, and W[1]-hard for general graphs when parameterized by the number of tokens. In this paper, we present a fixedparameter algorithm for token jumping on planar graphs, where the parameter is only the number of tokens. Furthermore, the algorithm can be modified so that it finds a shortest sequence for a yes-instance. The same scheme of the algorithms can be applied to a wider class of graphs which forbid a complete bipartite graph K3,t as a subgraph for a fixed integer t ≥ 3.

本文言語English
ホスト出版物のタイトルAlgorithms and Computation - 25th International Symposium, ISAAC 2014, Proceedings
編集者Hee-Kap Ahn, Chan-Su Shin
出版社Springer Verlag
ページ208-219
ページ数12
ISBN(電子版)9783319130743
DOI
出版ステータスPublished - 2014

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
8889
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Fixed-parameter tractability of token jumping on planar graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル