Finite energy of generalized suitable weak solutions to the Navier–Stokes equations and Liouville-type theorems in two dimensional domains

Hideo Kozono, Yutaka Terasawa, Yuta Wakasugi

研究成果: Article査読

抄録

Introducing a new notion of generalized suitable weak solutions, we first prove validity of the energy inequality for such a class of weak solutions to the Navier–Stokes equations in the whole space Rn. Although we need certain growth condition on the pressure, we may treat the class even with infinite energy quantity except for the initial velocity. We next handle the equation for vorticity in 2D unbounded domains. Under a certain condition on the asymptotic behavior at infinity, we prove that the vorticity and its gradient of solutions are both globally square integrable. As their applications, Loiuville-type theorems are obtained.

本文言語English
ページ(範囲)1227-1247
ページ数21
ジャーナルJournal of Differential Equations
265
4
DOI
出版ステータスPublished - 2018 8 15

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Finite energy of generalized suitable weak solutions to the Navier–Stokes equations and Liouville-type theorems in two dimensional domains」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル