Finite displacement analysis using rotational degrees of freedom about three right-angled axes

Humihiko Gotou, Takashi Kuwataka, Terumasa Nishihara, Tetsuo Iwakuma

研究成果: Article査読

8 被引用数 (Scopus)

抄録

The stiffness equation in finite displacement problems is often derived from the virtual work equation, partly in order to avoid the complicated formulation based on the potential functional. Describing the virtual rotational angles by infinitesimal rotational angles about three axes of the right-angled Cartesian coordinate system, we formulate tangent stiffness equations whose rotational degrees of freedom are described by rotational angles about the three axes. The rotational degrees of freedom are useful to treat three rotational components in nodal displacement vectors as vector components for coordinate transformation, when non-vector components like Euler's angles are used to describe finite rotations. In this paper accuracy of the formulations is numerically demonstrated.

本文言語English
ページ(範囲)319-328
ページ数10
ジャーナルCMES - Computer Modeling in Engineering and Sciences
4
2
出版ステータスPublished - 2003 12 1

ASJC Scopus subject areas

  • ソフトウェア
  • モデリングとシミュレーション
  • コンピュータ サイエンスの応用

フィンガープリント

「Finite displacement analysis using rotational degrees of freedom about three right-angled axes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル