Finding optimal edge-rankings of trees

Xiao Zhou, Takao Nishizeki

研究成果: Conference contribution

5 被引用数 (Scopus)

抄録

An edge-ranking of an undirected graph G is a labeling of the edges of G with integers such that every path between two edges with the same label i contains an edge with label j > i. An edge-ranking using a minimum number of ranks is called an optimal edge-ranking. The problem of finding an optimal edge-ranking of G has applications in scheduling the manufacture of complex multi-part products; it is equivalent to finding the minimum height edge separator tree of G. Polynomial-time algorithms for the problem on trees have been obtained, which find an optimal edge-ranking of a tree T in time O(n3 log n) where n is the number of vertices in T. In our previous paper we have given a simple O(n2) algorithm. This paper presents a more efficient algorithm, which finds an optimal edge-ranking of a tree in time O(n log n).

本文言語English
ホスト出版物のタイトルProceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1995
出版社Association for Computing Machinery
ページ122-131
ページ数10
ISBN(電子版)0898713498
出版ステータスPublished - 1995 1 22
イベント6th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1995 - San Francisco, United States
継続期間: 1995 1 221995 1 24

出版物シリーズ

名前Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms

Other

Other6th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1995
国/地域United States
CitySan Francisco
Period95/1/2295/1/24

ASJC Scopus subject areas

  • ソフトウェア
  • 数学 (全般)

フィンガープリント

「Finding optimal edge-rankings of trees」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル