Finding a minimum-weight k-link path in graphs with the concave Monge property and applications

A. Aggarwal, B. Schieber, T. Tokuyama

研究成果: Article

57 引用 (Scopus)

抜粋

Let G be a weighted, complete, directed acyclic graph (DAG) whose edge weights obey the concave Monge condition. We give an efficient algorithm for finding the minimum-weight k-link path between a given pair of vertices for any given k. The time complexity of our algorithm is {Mathematical expression}. Our algorithm uses some properties of DAGs with the concave Monge property together with the parametric search technique. We apply our algorithm to get efficient solutions for the following problems, improving on previous results: (1) Finding the largest k-gon contained in a given convex polygon. (2) Finding the smallest k-gon that is the intersection of k half-planes out of n half-planes defining a convex n-gon. (3) Computing maximum k-cliques of an interval graph. (4) Computing length-limited Huffman codes. (5) Computing optimal discrete quantization.

元の言語English
ページ(範囲)263-280
ページ数18
ジャーナルDiscrete & Computational Geometry
12
発行部数1
DOI
出版物ステータスPublished - 1994 12 1

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Geometry and Topology
  • Discrete Mathematics and Combinatorics
  • Computational Theory and Mathematics

フィンガープリント Finding a minimum-weight k-link path in graphs with the concave Monge property and applications' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用