Finding a minimum-weight k-link path in graphs with the concave Monge property and applications

A. Aggarwal, B. Schieber, T. Tokuyama

研究成果: Article査読

62 被引用数 (Scopus)

抄録

Let G be a weighted, complete, directed acyclic graph (DAG) whose edge weights obey the concave Monge condition. We give an efficient algorithm for finding the minimum-weight k-link path between a given pair of vertices for any given k. The time complexity of our algorithm is {Mathematical expression}. Our algorithm uses some properties of DAGs with the concave Monge property together with the parametric search technique. We apply our algorithm to get efficient solutions for the following problems, improving on previous results: (1) Finding the largest k-gon contained in a given convex polygon. (2) Finding the smallest k-gon that is the intersection of k half-planes out of n half-planes defining a convex n-gon. (3) Computing maximum k-cliques of an interval graph. (4) Computing length-limited Huffman codes. (5) Computing optimal discrete quantization.

本文言語English
ページ(範囲)263-280
ページ数18
ジャーナルDiscrete & Computational Geometry
12
1
DOI
出版ステータスPublished - 1994 12月
外部発表はい

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 幾何学とトポロジー
  • 離散数学と組合せ数学
  • 計算理論と計算数学

フィンガープリント

「Finding a minimum-weight k-link path in graphs with the concave Monge property and applications」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル