Fast full permuted pattern matching algorithms on multi-track strings

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

A multi-track string is a tuple of strings of the same length. The full permuted pattern matching problem is, given two multi-track strings T = (t1, t2, . . . , tN) and P = (p1, p2, . . . , pN) such that |p1| = = |pN| ≤ |t1| = = |tN|, to find all positions i such that P = (tr1 [i : I+m-1], . . . , trN [i : I+m-1]) for some permutation (r1, . . . , rN) of (1, . . . ,N), where m = |p1| and t[i : J] denotes the substring of t from position i to j. We propose new algorithms that perform full permuted pattern matching practically fast. The first and second algorithms are based on the Boyer-Moore algorithm and the Horspool algorithm, respectively. The third algorithm is based on the Aho-Corasick algorithm where we use a multi-track character instead of a single character in the so-called goto function. The fourth algorithm is an improvement of the multi-track Knuth-Morris-Pratt algorithm that uses an automaton instead of the failure function of the original algorithm. Our experiment results demonstrate that those algorithms perform permuted pattern matching faster than existing algorithms.

本文言語English
ホスト出版物のタイトルProceedings of the Prague Stringology Conference, PSC 2016
編集者Jan Holub, Jan Zdarek
出版社Prague Stringology Club
ページ7-21
ページ数15
ISBN(電子版)9788001059968
出版ステータスPublished - 2016
イベント20th Prague Stringology Conference, PSC 2016 - Prague, Czech Republic
継続期間: 2016 8 292016 8 31

出版物シリーズ

名前Proceedings of the Prague Stringology Conference, PSC 2016

Conference

Conference20th Prague Stringology Conference, PSC 2016
国/地域Czech Republic
CityPrague
Period16/8/2916/8/31

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Fast full permuted pattern matching algorithms on multi-track strings」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル