Factors for inconsistent aerosol single scattering albedo between SKYNET and AERONET

P. Khatri, T. Takamura, T. Nakajima, V. Estellés, H. Irie, H. Kuze, M. Campanelli, A. Sinyuk, S. M. Lee, B. J. Sohn, G. Pandithurai, S. W. Kim, S. C. Yoon, J. A. Martinez-Lozano, M. Hashimoto, P. C.S. Devara, N. Manago

研究成果: Article査読

16 被引用数 (Scopus)


SKYNET and Aerosol Robotic Network (AERONET) retrieved aerosol single scattering albedo (SSA) values of four sites, Chiba (Japan), Pune (India), Valencia (Spain), and Seoul (Korea), were compared to understand the factors behind often noted large SSA differences between them. SKYNET and AERONET algorithms are found to produce nearly same SSAs for similarity in input data, suggesting that SSA differences between them are primarily due to quality of input data due to different calibration and/or observation protocols as well as difference in quality assurance criteria. The most plausible reason for high SSAs in SKYNET is found to be underestimated calibration constant for sky radiance (ΔΩ). The disk scan method (scan area: 1° × 1° area of solar disk) of SKYNET is noted to produce stable wavelength-dependent ΔΩ values in comparison to those determined from the integrating sphere used by AERONET to calibrate sky radiance. Aerosol optical thickness (AOT) difference between them can be the next important factor for their SSA difference, if AOTs between them are not consistent. Inconsistent values of surface albedo while analyzing data of SKYNET and AERONET can also bring SSA difference between them, but the effect of surface albedo is secondary. The aerosol nonsphericity effect is found to be less important for SSA difference between these two networks.

ジャーナルJournal of Geophysical Research
出版ステータスPublished - 2016 2 27

ASJC Scopus subject areas

  • 地球物理学
  • 林業
  • 海洋学
  • 水圏科学
  • 生態学
  • 水の科学と技術
  • 土壌科学
  • 地球化学および岩石学
  • 地表過程
  • 大気科学
  • 地球惑星科学(その他)
  • 宇宙惑星科学
  • 古生物学


「Factors for inconsistent aerosol single scattering albedo between SKYNET and AERONET」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。