TY - JOUR
T1 - Expression of calcium-permeable cation channel CD20 accelerates progression through the G1 phase in Balb/c 3T3 cells
AU - Kanzaki, Makoto
AU - Shibata, Hiroshi
AU - Mogami, Hideo
AU - Kojima, Itaru
PY - 1995/6/2
Y1 - 1995/6/2
N2 - CD20 is a transmembrane protein that functions as a Ca2+-permeable cation channel (Bubien, J. K., Zhou, L. J., Bell, P. D., Frizzel, R. A., and Tedder, T. F. (1993) J. Cell Biol. 121, 1121-1132) and is involved in growth regulation of B lymphocytes. In order to further investigate the role of calcium entry in cell cycle progression, we introduced the cDNA encoding a Ca2+-permeable cation channel, CD20, into Balb/c 3T3 cells. Balb/c 3T3 cells transfected with a vector containing cDNA encoding CD20 expressed the CD20 protein, which was detected by assaying the binding of a monoclonal antibody against CD20. Calcium-permeable cation channel activity was detected in CD20-expressing cells by whole cell patch clamp recording and microfluorometric determination of the cytoplasmic Ca2+ concentration using fura-2. The expression of CD20 induced significant alterations in the responses of the cells to insulin-like growth factor-I (IGF-I). IGF-I induced DNA synthesis by control cells only when they had been pretreated with both platelet-derived growth factor (PDGF) and epidermal growth factor (EGF). In contrast, DNA synthesis by 30% of the quiescent CD20-expressing cells was initiated in response to IGF-I in the absence of priming with PDGF and EGF. When control quiescent cells were primed with PDGF and EGF, the addition of IGF-I led to the initiation of DNA synthesis after 14 h or more, whereas it induced DNA synthesis by CD20-expressing cells primed with PDGF and EGF 4 h earlier. The IGF-induced DNA synthesis was dependent on extracellular Ca2+, and expression of CD20 reduced the concentration of extracellular Ca2+ required for it. Furthermore, DNA synthesis by approximately 25% of the CD20- expressing cells was initiated after priming with PDGF and EGF, even in the absence of the progression factor IGF-I. These results indicate that CD20 expressed in Balb/c 3T3 cells functions as a constitutively active Ca2+- permeable cation channel and that expression of CD20 accelerates G1 progression in a Ca2+-dependent manner.
AB - CD20 is a transmembrane protein that functions as a Ca2+-permeable cation channel (Bubien, J. K., Zhou, L. J., Bell, P. D., Frizzel, R. A., and Tedder, T. F. (1993) J. Cell Biol. 121, 1121-1132) and is involved in growth regulation of B lymphocytes. In order to further investigate the role of calcium entry in cell cycle progression, we introduced the cDNA encoding a Ca2+-permeable cation channel, CD20, into Balb/c 3T3 cells. Balb/c 3T3 cells transfected with a vector containing cDNA encoding CD20 expressed the CD20 protein, which was detected by assaying the binding of a monoclonal antibody against CD20. Calcium-permeable cation channel activity was detected in CD20-expressing cells by whole cell patch clamp recording and microfluorometric determination of the cytoplasmic Ca2+ concentration using fura-2. The expression of CD20 induced significant alterations in the responses of the cells to insulin-like growth factor-I (IGF-I). IGF-I induced DNA synthesis by control cells only when they had been pretreated with both platelet-derived growth factor (PDGF) and epidermal growth factor (EGF). In contrast, DNA synthesis by 30% of the quiescent CD20-expressing cells was initiated in response to IGF-I in the absence of priming with PDGF and EGF. When control quiescent cells were primed with PDGF and EGF, the addition of IGF-I led to the initiation of DNA synthesis after 14 h or more, whereas it induced DNA synthesis by CD20-expressing cells primed with PDGF and EGF 4 h earlier. The IGF-induced DNA synthesis was dependent on extracellular Ca2+, and expression of CD20 reduced the concentration of extracellular Ca2+ required for it. Furthermore, DNA synthesis by approximately 25% of the CD20- expressing cells was initiated after priming with PDGF and EGF, even in the absence of the progression factor IGF-I. These results indicate that CD20 expressed in Balb/c 3T3 cells functions as a constitutively active Ca2+- permeable cation channel and that expression of CD20 accelerates G1 progression in a Ca2+-dependent manner.
UR - http://www.scopus.com/inward/record.url?scp=0029016147&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029016147&partnerID=8YFLogxK
U2 - 10.1074/jbc.270.22.13099
DO - 10.1074/jbc.270.22.13099
M3 - Article
C2 - 7539422
AN - SCOPUS:0029016147
VL - 270
SP - 13099
EP - 13104
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 22
ER -