Explicit definition of PT symmetry for nonunitary quantum walks with gain and loss

Ken Mochizuki, Dakyeong Kim, Hideaki Obuse

研究成果: Article査読

35 被引用数 (Scopus)

抄録

PT symmetry, that is, a combined parity and time-reversal symmetry, is a key milestone for non-Hermitian systems exhibiting entirely real eigenenergy. In the present work, motivated by a recent experiment, we study PT symmetry of the time-evolution operator of nonunitary quantum walks. We present the explicit definition of PT symmetry by employing a concept of symmetry time frames. We provide a necessary and sufficient condition so that the time-evolution operator of the nonunitary quantum walk retains PT symmetry even when parameters of the model depend on position. It is also shown that there exist extra symmetries embedded in the time-evolution operator. Applying these results, we clarify that the nonunitary quantum walk in the experiment does have PT symmetry.

本文言語English
論文番号062116
ジャーナルPhysical Review A
93
6
DOI
出版ステータスPublished - 2016 6 17
外部発表はい

ASJC Scopus subject areas

  • 原子分子物理学および光学

フィンガープリント

「Explicit definition of PT symmetry for nonunitary quantum walks with gain and loss」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル