Experimental study of compressed stack algorithms in limited memory environments

Jean François Baffier, Yago Diez, Matias Korman

研究成果: Conference contribution

3 被引用数 (Scopus)

抄録

The compressed stack is a data structure designed by Barba et al. (Algorithmica 2015) that allows to reduce the amount of memory needed by a certain class of algorithms at the cost of increasing its runtime. In this paper we introduce the first implementation of this data structure and make its source code publicly available. Together with the implementation we analyse the performance of the compressed stack. In our synthetic experiments, considering di erent test scenarios and using data sizes ranging up to 230 elements, we compare it with the classic (uncompressed) stack, both in terms of runtime and memory used. Our experiments show that the compressed stack needs significantly less memory than the usual stack (this di erence is significant for inputs containing 2000 or more elements). Overall, with a proper choice of parameters, we can save a significant amount of space (from two to four orders of magnitude) with a small increase in the runtime (2.32 times slower on average than the classic stack). These results hold even in test scenarios specifically designed to be challenging for the compressed stack.

本文言語English
ホスト出版物のタイトル17th Symposium on Experimental Algorithms, SEA 2018
編集者Gianlorenzo D'Angelo
出版社Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ページ19:1-19:13
ISBN(電子版)9783959770705
DOI
出版ステータスPublished - 2018 6 1
イベント17th Symposium on Experimental Algorithms, SEA 2018 - L'Aquila, Italy
継続期間: 2018 6 272018 6 29

出版物シリーズ

名前Leibniz International Proceedings in Informatics, LIPIcs
103
ISSN(印刷版)1868-8969

Conference

Conference17th Symposium on Experimental Algorithms, SEA 2018
CountryItaly
CityL'Aquila
Period18/6/2718/6/29

ASJC Scopus subject areas

  • Software

フィンガープリント 「Experimental study of compressed stack algorithms in limited memory environments」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル