Existence of weak solutions to a convection–diffusion equation in a uniformly local Lebesgue space

Md Rabiul Haque, Takayoshi Ogawa, Ryuichi Sato

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We consider the local existence and the uniqueness of a weak solution of the initial boundary value problem to a convection–diffusion equation in a uniformly local function space Lr uloc,ρ(Ω), where the solution is not decaying at |x| → ∞. We show that the local existence and the uniqueness of a solution for the initial data in uniformly local Lr spaces and identify the Fujita-Weissler critical exponent for the local well-posedness found by Escobedo-Zuazua [10] is also valid for the uniformly local function class.

本文言語English
ページ(範囲)677-697
ページ数21
ジャーナルCommunications on Pure and Applied Analysis
19
2
DOI
出版ステータスPublished - 2020

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Existence of weak solutions to a convection–diffusion equation in a uniformly local Lebesgue space」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル