Evolution of charge dynamics in: Effects of electronic correlations and nematicity

M. Nakajima, K. Yanase, M. Kawai, D. Asami, T. Ishikawa, F. Nabeshima, Y. Imai, A. Maeda, S. Tajima

研究成果: Article査読

抄録

We systematically studied in-plane optical conductivity of thin films fabricated on substrates for , 0.1, 0.2, and 0.4. This system shows a large enhancement of superconducting transition temperature at and a gentle decrease in with further increasing . The low-energy optical conductivity spectrum is described by the sum of narrow and broad Drude components, associated with coherent and incoherent charge dynamics, respectively. With increasing Te content, the spectral weight of the narrow Drude component decreases, whereas the total weight of the two Drude components increases. As a consequence, the fraction of the narrow Drude weight significantly decreases, indicating that Te substitution leads to stronger electronic correlations. Below the nematic transition temperature, the narrow Drude weight decreases with decreasing temperature. This indicates the reduction of the coherent carrier density, resulting from the Fermi-surface modification induced by the development of the orbital order. The reduction of the narrow Drude weight with temperature stopped at 0.2, corresponding to the disappearance of the nematic transition. Our result suggests that the increase in the coherent carrier density induced by the suppression of the nematic transition gives rise to the enhancement of . The decrease in with further Te substitution likely arises from too strong electronic correlations, which are not favorable for superconductivity.

本文言語English
論文番号024512
ジャーナルPhysical Review B
104
2
DOI
出版ステータスPublished - 2021 7月 1

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学

フィンガープリント

「Evolution of charge dynamics in: Effects of electronic correlations and nematicity」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル