TY - JOUR
T1 - Evolution of charge dynamics in
T2 - Effects of electronic correlations and nematicity
AU - Nakajima, M.
AU - Yanase, K.
AU - Kawai, M.
AU - Asami, D.
AU - Ishikawa, T.
AU - Nabeshima, F.
AU - Imai, Y.
AU - Maeda, A.
AU - Tajima, S.
N1 - Funding Information:
This work was supported by JSPS KAKENHI Grants No. JP18K13500 and No. JP18K03513.
Publisher Copyright:
© 2021 American Physical Society
PY - 2021/7/1
Y1 - 2021/7/1
N2 - We systematically studied in-plane optical conductivity of thin films fabricated on substrates for , 0.1, 0.2, and 0.4. This system shows a large enhancement of superconducting transition temperature at and a gentle decrease in with further increasing . The low-energy optical conductivity spectrum is described by the sum of narrow and broad Drude components, associated with coherent and incoherent charge dynamics, respectively. With increasing Te content, the spectral weight of the narrow Drude component decreases, whereas the total weight of the two Drude components increases. As a consequence, the fraction of the narrow Drude weight significantly decreases, indicating that Te substitution leads to stronger electronic correlations. Below the nematic transition temperature, the narrow Drude weight decreases with decreasing temperature. This indicates the reduction of the coherent carrier density, resulting from the Fermi-surface modification induced by the development of the orbital order. The reduction of the narrow Drude weight with temperature stopped at 0.2, corresponding to the disappearance of the nematic transition. Our result suggests that the increase in the coherent carrier density induced by the suppression of the nematic transition gives rise to the enhancement of . The decrease in with further Te substitution likely arises from too strong electronic correlations, which are not favorable for superconductivity.
AB - We systematically studied in-plane optical conductivity of thin films fabricated on substrates for , 0.1, 0.2, and 0.4. This system shows a large enhancement of superconducting transition temperature at and a gentle decrease in with further increasing . The low-energy optical conductivity spectrum is described by the sum of narrow and broad Drude components, associated with coherent and incoherent charge dynamics, respectively. With increasing Te content, the spectral weight of the narrow Drude component decreases, whereas the total weight of the two Drude components increases. As a consequence, the fraction of the narrow Drude weight significantly decreases, indicating that Te substitution leads to stronger electronic correlations. Below the nematic transition temperature, the narrow Drude weight decreases with decreasing temperature. This indicates the reduction of the coherent carrier density, resulting from the Fermi-surface modification induced by the development of the orbital order. The reduction of the narrow Drude weight with temperature stopped at 0.2, corresponding to the disappearance of the nematic transition. Our result suggests that the increase in the coherent carrier density induced by the suppression of the nematic transition gives rise to the enhancement of . The decrease in with further Te substitution likely arises from too strong electronic correlations, which are not favorable for superconductivity.
UR - http://www.scopus.com/inward/record.url?scp=85111707538&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85111707538&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.104.024512
DO - 10.1103/PhysRevB.104.024512
M3 - Article
AN - SCOPUS:85111707538
VL - 104
JO - Physical Review B
JF - Physical Review B
SN - 2469-9950
IS - 2
M1 - 024512
ER -