Error analysis of splitting methods for semilinear evolution equations

Masahito Ohta, Takiko Sasaki

研究成果: Article査読

抄録

We consider a Strang-type splitting method for an abstract semilinear evolution equation ∂tu=Au+F(u). Roughly speaking, the splitting method is a time-discretization approximation based on the decomposition of the operators A and F. Particularly, the Strang method is a popular splitting method and is known to be convergent at a second order rate for some particular ODEs and PDEs. Moreover, such estimates usually address the case of splitting the operator into two parts. In this paper, we consider the splitting method which is split into three parts and prove that our proposed method is convergent at a second order rate.

本文言語English
ページ(範囲)405-432
ページ数28
ジャーナルApplications of Mathematics
62
4
DOI
出版ステータスPublished - 2017 8月 1
外部発表はい

ASJC Scopus subject areas

  • 応用数学

フィンガープリント

「Error analysis of splitting methods for semilinear evolution equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル