Eosinophil penetration through cultured human airway epithelial cell layer.

T. Masuda, M. Yamaya, S. Shimura, H. Hoshi, H. Sasaki, K. Shirato

研究成果: Article査読

7 被引用数 (Scopus)


We investigated the mechanisms of eosinophil penetration and mannitol permeability through a multilayer of cultured human tracheal epithelial cells. Wells of tissue culture plates were separated into the upper and the lower chambers by the cultured epithelial cell layer. 51Cr-labeled eosinophils or 3H-mannitol were put into the lower chamber. To stimulate the epithelial cells, platelet-activating factor (PAF) and/or phorbol myristate acetate (PMA) were added to the upper chamber. After 4 h of incubation, the eosinophil penetration rate was determined as a percentage of the total count added to the lower chamber. PMA significantly increased the eosinophil penetration rate in a dose-dependent manner (4.0% at 10(-5) M), compared with control (0.67%), whereas PAF itself did not. Activation of eosinophils by the addition of PAF to the lower chamber produced a significant increase in the eosinophil penetration (6.5% at 10(-6) M), which was inhibited by staurosporine. For determining the mannitol permeability, PMA, PAF, and/or supernatant from eosinophils were added to both upper and lower chambers and incubated for 30 min. PMA induced a significant increase in the mannitol permeability (175% of controls at 10(-5) M), whereas PAF itself did not alter it. Supernatant from eosinophils activated by PAF (10(-6) M) significantly increased the permeability (451% of controls), which was blocked by staurosporine. Supernatants from AA861 (a 5-lipoxygenase inhibitor)-treated or phenidon (a phospholipase A2 inhibitor)-treated eosinophils activated by PAF failed to alter the supernatant-induced increases in mannitol permeability.(ABSTRACT TRUNCATED AT 250 WORDS)

ジャーナルAmerican journal of respiratory cell and molecular biology
出版ステータスPublished - 1995 6月

ASJC Scopus subject areas

  • 分子生物学
  • 呼吸器内科
  • 臨床生化学
  • 細胞生物学


「Eosinophil penetration through cultured human airway epithelial cell layer.」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。