Electronic structure of periodic curved surfaces - Continuous surface versus graphitic sponge

H. Aoki, M. Koshino, D. Takeda, H. Morise, K. Kuroki

研究成果: Conference article査読

8 被引用数 (Scopus)

抄録

We investigate the band structure of electrons bound on periodic curved surfaces. We have formulated Schrödinger's equation with the Weierstrass representation, when the surface is minimal, which is numerically solved. Bands and the Bloch wave functions are basically determined by the way in which the "pipes" are connected into a network, where the Bonnet(conformal)- transformed surfaces have related electronic structures. We then examine, as a realisation of periodic surfaces, the tight-binding model for atomic networks ("sponges"), where the low-energy spectrum coincides with those for continuous curved surfaces.

本文言語English
ページ(範囲)696-699
ページ数4
ジャーナルPhysica E: Low-Dimensional Systems and Nanostructures
22
1-3
DOI
出版ステータスPublished - 2004 4月
外部発表はい
イベント15th International Conference on ELectronic Propreties - Nara, Japan
継続期間: 2003 7月 142003 7月 18

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 原子分子物理学および光学
  • 凝縮系物理学

フィンガープリント

「Electronic structure of periodic curved surfaces - Continuous surface versus graphitic sponge」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル