Electronic properties of Co2MnSi thin films studied by hard x-ray photoelectron spectroscopy

Siham Ouardi, Andrei Gloskovskii, Benjamin Balke, Catherine A. Jenkins, Joachim Barth, Gerhard H. Fecher, Claudia Felser, Mihaela Gorgoi, Marcel Mertin, Franz Schäfers, Eiji Ikenaga, Ke Yang, Keisuke Kobayashi, Takahide Kubota, Mikihiko Ogane, Yasuo Ando

研究成果: Article査読

13 被引用数 (Scopus)


This work reports on the electronic properties of thin films of the Heusler compound Co2MnSi studied by means of hard x-ray photoelectron spectroscopy (HAXPES). The results of photoelectron spectroscopy from multilayered thin films excited by photons of 2-8 keV are presented. The measurements were performed on (substrate/buffer layer/Co2MnSi(z)/ capping layer) multilayers with a thickness z ranging from 0 to 50 nm. It is shown that high energy spectroscopy is a valuable tool for non-destructive depth profiling. The experimentally determined values of the inelastic electron mean free path in Co2MnSi increase from about 19.5 to 67 Å on increasing the kinetic energy from about 1.9 to 6.8 keV. The influence of the thermal treatment of Co2MnSi thin films on the electronic properties was also explored. The structure of the thin films is significantly improved by heat treatment as revealed by x-ray diffraction. It was found that the electronic structure of annealed samples as measured by photoelectron spectroscopy is similar to that of a well-ordered bulk reference sample. The samples without heat treatment show strong deviations from the electronic structure of bulk material. The differences between the disordered and the ordered films are also observed in core level spectra. Chemical shifts of about 100 meV are observed at the Mn 2p states. The stronger localization of the Mn d states in the ordered samples is obvious from the multiplet satellite of the Mn 2p3/2 state.

ジャーナルJournal of Physics D: Applied Physics
出版ステータスPublished - 2009 5月 6

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学
  • 音響学および超音波学
  • 表面、皮膜および薄膜


「Electronic properties of Co2MnSi thin films studied by hard x-ray photoelectron spectroscopy」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。