Electron transport in a gold nanoparticle assembly structure stabilized by a physisorbed porphyrin derivative

Yuki Noda, Shin Ichiro Noro, Tomoyuki Akutagawa, Takayoshi Nakamura

研究成果: Article

21 引用 (Scopus)


Gold nanoparticles stabilized by meso-5,10,15,20-tetrakis(2-thienyl) porphyrin (2T) via physisorption (2T-AuNP) were synthesized, and the electronic transport of assemblies of these films was studied. The adsorption mechanism of 2T on gold nanoparticles was examined using UV-vis-NIR, IR, Raman, and H1 -NMR spectroscopy, which showed no evidence of any covalent bonding between 2T and the gold nanoparticles. In temperature-dependent resistivity measurements, a crossover from thermally assisted hopping to Efros-Shklovskii-type variable-range hopping (ES-VRH) was observed around 50 K on decreasing the temperature. At higher temperatures, the 2T-AuNP assembly structure followed an Arrhenius plot (EA =15 meV) with ohmic I-V characteristics at each measurement point. On the other hand, the activation energy at lower temperatures decreased nonlinearly in a T-1 plot, and the logarithm of the resistance obeyed a T-1/2 law, corresponding to an ES-VRH mechanism, which is predicted for disordered materials as a variable-range hopping mechanism influenced by strong Coulomb interactions. ES-VRH behavior has been observed previously in saturated molecule/gold nanoparticle assemblies and was confirmed in our 2T-AuNP assembly. Electronically active conjugated molecules were successfully incorporated between the nanoparticles, keeping the electronic structure of the gold nanoparticle and 2T moieties isolated from each other.

ジャーナルPhysical Review B - Condensed Matter and Materials Physics
出版物ステータスPublished - 2010 11 12

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

フィンガープリント Electron transport in a gold nanoparticle assembly structure stabilized by a physisorbed porphyrin derivative' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用