Eigenvalues of Quantum Walks of Grover and Fourier Types

Takashi Komatsu, Tatsuya Tate

研究成果: Article査読

3 被引用数 (Scopus)

抄録

A necessary and sufficient conditions for a certain class of periodic unitary transition operators to have eigenvalues are given. Applying this, it is shown that Grover walks in any dimension has both of ±1 as eigenvalues and it has no other eigenvalues. It is also shown that the lazy Grover walks in any dimension has 1 as an eigenvalue, and it has no other eigenvalues. As a result, a localization phenomenon occurs for these quantum walks. A general conditions for the existence of eigenvalues can be applied also to certain quantum walks of Fourier type. It is shown that the two-dimensional Fourier walk does not have eigenvalues and hence it is not localized at any point. Some other topics, such as Grover walks on the triangular lattice, products and deformations of Grover walks, are also discussed.

本文言語English
ページ(範囲)1293-1318
ページ数26
ジャーナルJournal of Fourier Analysis and Applications
25
4
DOI
出版ステータスPublished - 2019 8 15

ASJC Scopus subject areas

  • 分析
  • 数学 (全般)
  • 応用数学

フィンガープリント

「Eigenvalues of Quantum Walks of Grover and Fourier Types」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル