抄録
Let M be a compact n-dimensional Riemannian orbifold of Ricci curvature ≥ n - 1. We prove that for 1 ≤ k ≤ n, the kth nonzero eigenvalue of the Laplacian on M is equal to the dimension n if and only if M is isometric to the k-times spherical suspension over the quotient Sn-k / Γ of the unit (n - k)-sphere by a finite group Γ ⊂ O(n - k + 1) acting isometrically on Sn - k ⊂ ℝn - k+1.
本文言語 | English |
---|---|
ページ(範囲) | 509-516 |
ページ数 | 8 |
ジャーナル | manuscripta mathematica |
巻 | 99 |
号 | 4 |
DOI | |
出版ステータス | Published - 1999 8月 |
外部発表 | はい |
ASJC Scopus subject areas
- 数学 (全般)