Efficient stabilization of cooperative matching games

Takehiro Ito, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi, Yoshio Okamoto

研究成果: Article査読

10 被引用数 (Scopus)

抄録

Cooperative matching games have drawn much interest partly because of the connection with bargaining solutions in the networking environment. However, it is not always guaranteed that a network under investigation gives rise to a stable bargaining outcome. To address this issue, we consider a modification process, called stabilization, that yields a network with stable outcomes, where the modification should be as small as possible. Therefore, the problem is cast to a combinatorial-optimization problem in a graph. Recently, the stabilization by edge removal was shown to be NP-hard. On the contrary, in this paper, we show that other possible ways of stabilization, namely, edge addition, vertex removal and vertex addition, are all polynomial-time solvable. Thus, we obtain a complete complexity-theoretic classification of the natural four variants of the network stabilization problem. We further study weighted variants and prove that the variants for edge addition and vertex removal are NP-hard.

本文言語English
ページ(範囲)69-82
ページ数14
ジャーナルTheoretical Computer Science
677
DOI
出版ステータスPublished - 2017 5 16

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Efficient stabilization of cooperative matching games」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル