TY - GEN
T1 - Effects of numerical plasma modeling on performance characterization of plasma actuator
AU - Nakai, Kumi
AU - Nishida, Hiroyuki
N1 - Funding Information:
This research was supported by the Grant-in-Aid for Young Scientists (A) K116H06133 and the Grant-in-Aid for JSPS Research Fellows 17J07566 of the Japan Society for the Promotion of Science.
Publisher Copyright:
© 2020, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2020
Y1 - 2020
N2 - A discharge plasma simulation based on a fluid model is carried out in order to investigate the effect of chemical reactions considered in the model on the reproducibility of electrohydrodynamic (EHD) force generation and gas heating processes in dielectric barrier discharge (DBD) plasma actuator. Single micro-discharges with positive and negative polarities are simulated utilizing two models with different reactions: simple model considering typical 6 reactions and model considering recombination in detail. There are no qualitative discrepancies in the characteristics of EHD force and heating power between two models, however; the composition of positive ion species is significantly different. In the detailed model, the dominant species is cluster ion (O4+) whose electron-ion recombination coefficient is quite high. In the positive discharge, secondary electron emission by positive ion bombardment decreases, resulting in the decrease in seed electrons. In the negative discharge, the rate of electron attachment decreases, and electrons and positive ions are lost rapidly due to the recombination. As a result, the recombination with cluster ions contributes to decrease in the positive EHD force and heating power in both positive and negative discharges.
AB - A discharge plasma simulation based on a fluid model is carried out in order to investigate the effect of chemical reactions considered in the model on the reproducibility of electrohydrodynamic (EHD) force generation and gas heating processes in dielectric barrier discharge (DBD) plasma actuator. Single micro-discharges with positive and negative polarities are simulated utilizing two models with different reactions: simple model considering typical 6 reactions and model considering recombination in detail. There are no qualitative discrepancies in the characteristics of EHD force and heating power between two models, however; the composition of positive ion species is significantly different. In the detailed model, the dominant species is cluster ion (O4+) whose electron-ion recombination coefficient is quite high. In the positive discharge, secondary electron emission by positive ion bombardment decreases, resulting in the decrease in seed electrons. In the negative discharge, the rate of electron attachment decreases, and electrons and positive ions are lost rapidly due to the recombination. As a result, the recombination with cluster ions contributes to decrease in the positive EHD force and heating power in both positive and negative discharges.
UR - http://www.scopus.com/inward/record.url?scp=85091939451&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091939451&partnerID=8YFLogxK
U2 - 10.2514/6.2020-1166
DO - 10.2514/6.2020-1166
M3 - Conference contribution
AN - SCOPUS:85091939451
SN - 9781624105951
T3 - AIAA Scitech 2020 Forum
BT - AIAA Scitech 2020 Forum
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Scitech Forum, 2020
Y2 - 6 January 2020 through 10 January 2020
ER -