抄録
Power-generation experiments of solid-oxide fuel cells with Ni/yttria-stabilized zirconia cermet anodes were carried out by changing the water-to-methane ratio in the fuel. To separate the electrochemical reactions occurring on the three-phase boundary of the anode from the steam-reforming reactions, premixed gases corresponding to the composition at thermal equilibrium were used as the fuel. The reactions on the anode were quantitatively clarified at different steam-to-methane ratios by making a mass balance of the elements and electrons and by determining the anode exit gas composition. For dry (i.e., no water) methane fuel, the carbon deposited on the three-phase boundary from the methane mainly reacted with oxide ions (O2-). With increasing steam-carbon (S/C) ratio from S/C = 0.5 to 1, hydrogen became the dominant reactant. The anode potential vs. current density for S/C = 1 agreed with that for hydrogen diluted with argon. At S/C ratios higher than 1.5, CO in the inlet gas reacted with oxide ions.
本文言語 | English |
---|---|
ページ(範囲) | 2481-2487 |
ページ数 | 7 |
ジャーナル | Journal of the Electrochemical Society |
巻 | 146 |
号 | 7 |
DOI | |
出版ステータス | Published - 1999 7月 |
外部発表 | はい |
ASJC Scopus subject areas
- 電子材料、光学材料、および磁性材料
- 再生可能エネルギー、持続可能性、環境
- 表面、皮膜および薄膜
- 電気化学
- 材料化学