Double solid twistor spaces II: General case

Nobuhiro Honda

研究成果: Article査読

1 被引用数 (Scopus)


In this paper we investigate Moishezon twistor spaces which have a structure of double covering over a very simple rational threefold. These spaces can be regarded as a direct generalization of the twistor spaces studied in [J. Differential Geom. 36 (1992), 451-491] and [Compos. Math. 82 (1992), 25-55] to the case of arbitrary signature. In particular, the branch divisor of the double covering is a cut of the rational threefold by a single quartic hypersurface. We determine a defining equation of the hypersurface in an explicit form. We also show that these twistor spaces interpolate LeBrun twistor spaces and the twistor spaces constructed in [J. Differential Geom. 82 (2009), 411-444].

ジャーナルJournal fur die Reine und Angewandte Mathematik
出版ステータスPublished - 2015 1 1

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

フィンガープリント 「Double solid twistor spaces II: General case」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。