Dispersive effect of the Coriolis force and the local well-posedness for the Navier-Stokes equations in the rotational framework

Tsukasa Iwabuchi, Ryo Takada

研究成果: Article査読

4 被引用数 (Scopus)

抄録

We consider the initial value problems for the Navier-Stokes equations with the Coriolis force. We prove the local in time existence and uniqueness of the mild solution for every Ω ∈ R \ {0} and u0 ∈ Hs(R3)3 with s > 1/2. Furthermore, we give a lower bound of the existence time in terms of |Ω|. (formula presented) It follows from our lower bound that the existence time T of the solution can be taken arbitrarily large provided the speed of rotation |Ω| is sufficiently fast.

本文言語English
ページ(範囲)365-385
ページ数21
ジャーナルFunkcialaj Ekvacioj
58
3
DOI
出版ステータスPublished - 2015 12 26
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 代数と数論
  • 幾何学とトポロジー

フィンガープリント

「Dispersive effect of the Coriolis force and the local well-posedness for the Navier-Stokes equations in the rotational framework」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル