Discrete random walks on the group Sol

Jérémie Brieussel, Ryokichi Tanaka

研究成果: Article査読

3 被引用数 (Scopus)

抄録

The harmonic measure ν on the boundary of the group Sol associated to a discrete random walk of law µ was described by Kaimanovich. We investigate when it is absolutely continuous or singular with respect to Lebesgue measure. By ratio entropy over speed, we show that any countable non-abelian subgroup admits a finite first moment non-degenerate μ with singular harmonic measure ν. On the other hand, we prove that some random walks with finitely supported step distribution admit a regular harmonic measure. Finally, we construct some exceptional random walks with arbitrarily small speed but singular harmonic measures. The two later results are obtained by comparison with Bernoulli convolutions, using results of Erdős and Solomyak.

本文言語English
ページ(範囲)291-321
ページ数31
ジャーナルIsrael Journal of Mathematics
208
1
DOI
出版ステータスPublished - 2015 9 1

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント 「Discrete random walks on the group Sol」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル