Direct ascent to the surface of asthenospheric magma in a region of convex lithospheric flexure

Yuki Sato, Naoto Hirano, Shiki Machida, Junji Yamamoto, Masao Nakanishi, Teruaki Ishii, Arashi Taki, Kazutaka Yasukawa, Yasuhiro Kato

研究成果: Article査読

14 被引用数 (Scopus)

抄録

The stress field of oceanic lithosphere controls the distribution of submarine petit-spot volcanoes. However, the eruption sites of these petit-spot volcanoes are considered to be limited to concavely flexed regions of lithosphere off the outer rise. Here, we present new data for a recently identified petit-spot lava field on a convexly flexed section of the lithosphere adjacent to the subduction zone offshore of northeast Japan in an area containing more than 80 volcanoes. This area is marked by strongly alkaline lavas that were erupted on the convexly flexed region. As for the concavely flexed region where the petit-spots previously reported, the base of the lithosphere beneath the eruption sites is under extension, whereas the upper part of the lithosphere is under compression. This change in the stress field, from the lower to upper lithosphere, causes ascending dikes to stall in the mid-lithosphere, leading to metasomatic interaction with the surrounding peridotite. The new geochemical data of rocks and xenocrysts presented in this study indicate that strongly alkaline magmas erupted on the convexly flexed region would have ascended more rapidly through the mid-depth of lithosphere because of the extensional regime of the upper lithosphere and decreasing the degree of metasomatic reaction with the surrounding mantle peridotite. The results indicate that the degree of metasomatism and the compositional variations of petit-spot magmas are controlled mainly by the stress field of the lithosphere.

本文言語English
ページ(範囲)1231-1243
ページ数13
ジャーナルInternational Geology Review
60
10
DOI
出版ステータスPublished - 2018 7月 27

ASJC Scopus subject areas

  • 地質学

フィンガープリント

「Direct ascent to the surface of asthenospheric magma in a region of convex lithospheric flexure」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル