Dimensionality-driven insulator-metal transition in A-site excess non-stoichiometric perovskites

Zhongchang Wang, Masaki Okude, Mitsuhiro Saito, Susumu Tsukimoto, Akira Ohtomo, Masaru Tsukada, Masashi Kawasaki, Yuichi Ikuhara

    研究成果: Article査読

    62 被引用数 (Scopus)

    抄録

    Coaxing correlated materials to the proximity of the insulator-metal transition region, where electronic wavefunctions transform from localized to itinerant, is currently the subject of intensive research because of the hopes it raises for technological applications and also for its fundamental scientific significance. In general, this tuning is achieved by either chemical doping to introduce charge carriers, or external stimuli to lower the ratio of Coulomb repulsion to bandwidth. In this study, we combine experiment and theory to show that the transition from well-localized insulating states to metallicity in a Ruddlesden-Popper series, La0.5 Srn + 1 - 0.5 Ti n O 3n+1, is driven by intercalating an intrinsically insulating SrTiO3 unit, in structural terms, by dimensionality n. This unconventional strategy, which can be understood upon a complex interplay between electrong-phonon coupling and electron correlations, opens up a new avenue to obtain metallicity or even superconductivity in oxide superlattices that are normally expected to be insulators.

    本文言語English
    論文番号106
    ジャーナルNature communications
    1
    8
    DOI
    出版ステータスPublished - 2010

    ASJC Scopus subject areas

    • 化学 (全般)
    • 生化学、遺伝学、分子生物学(全般)
    • 物理学および天文学(全般)

    フィンガープリント

    「Dimensionality-driven insulator-metal transition in A-site excess non-stoichiometric perovskites」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル