Differential calculus of hochschild pairs for infinity-categories

研究成果: Article査読

抄録

In this paper, we provide a conceptual new construction of the algebraic structure on the pair of the Hochschild cohomology spectrum (cochain complex) and Hochschild homology spectrum, which is analogous to the structure of calculus on a manifold. This algebraic structure is encoded by a two-colored operad introduced by Kontsevich and Soibelman. We prove that for a stable idempotent-complete infinity-category, the pair of its Hochschild cohomology and homology spectra naturally admits the structure of algebra over the operad. Moreover, we prove a generalization to the equivariant context.

本文言語English
論文番号097
ジャーナルSymmetry, Integrability and Geometry: Methods and Applications (SIGMA)
16
DOI
出版ステータスPublished - 2020

ASJC Scopus subject areas

  • 分析
  • 数理物理学
  • 幾何学とトポロジー

フィンガープリント

「Differential calculus of hochschild pairs for infinity-categories」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル