Diameter of colorings under Kempe changes

Marthe Bonamy, Marc Heinrich, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Moritz Mühlenthaler, Akira Suzuki, Kunihiro Wasa

研究成果: Article査読

1 被引用数 (Scopus)

抄録

Given a k-coloring of a graph G, a Kempe-change for two colors a and b produces another k-coloring of G, as follows: first choose a connected component in the subgraph of G induced by the two color classes of a and b, and then swap the colors a and b in the component. Two k-colorings are called Kempe-equivalent if one can be transformed into the other by a sequence of Kempe-changes. We consider two problems, defined as follows: First, given two k-colorings of a graph G, KEMPE REACHABILITY asks whether they are Kempe-equivalent; and second, given a graph G and a positive integer k, KEMPE CONNECTIVITY asks whether any two k-colorings of G are Kempe-equivalent. We analyze the complexity of these problems from the viewpoint of graph classes. We prove that KEMPE REACHABILITY is PSPACE-complete for any fixed k≥3, and that it remains PSPACE-complete even when restricted to three colors and planar graphs of maximum degree six. Furthermore, we show that both problems admit polynomial-time algorithms on chordal graphs, bipartite graphs, and cographs. For each of these graph classes, we give a non-trivial upper bound on the number of Kempe-changes needed in order to certify that two k-colorings are Kempe-equivalent.

本文言語English
ページ(範囲)45-57
ページ数13
ジャーナルTheoretical Computer Science
838
DOI
出版ステータスPublished - 2020 10 24

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Diameter of colorings under Kempe changes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル