Designing beam steering for accurate measurement of intima-media thickness at carotid sinus

Takashi Mashiyama, Hideyuki Hasegawa, Hiroshi Kanai

研究成果: Article査読

6 被引用数 (Scopus)

抄録

Recently, cardiovascular disease has become the second most common cause of death in Japan following malignant neoplasm formation. Therefore, it is necessary to diagnose atherosclerosis during its early stages because atherosclerosis is one of the main causes of cardiovascular diseases. The carotid sinus is a site that is easily affected by atherosclerosis [C. K. Zarins et al.: Circ. Res. 53 (1983) 502]; therefore, the diagnosis of this disease at this site is important [S. C. Nicholls et al.: Stroke 20 (1989) 175]. However, it is difficult to accurately diagnose atherosclerosis in the carotid sinus in the long-axis plane, which is parallel to the axis of the vessel, using conventional linear scanning because the carotid sinus is not flat along the axis of the vessel, and the ultrasonic beams used in linear scanning are perpendicular to the arterial wall in a limited region. Echoes from regions that are not perpendicular to the ultrasonic beams are very weak and the arterial wall in such regions is hardly recognized in a B-mode image. In this study, the position of the arterial wall was predetermined on the basis of the B-mode image obtained by conventional linear scanning, then ultrasonic beams were transmitted again so that all beams were almost perpendicular to the arterial wall. In basic experiments, a nonflat object made of silicone rubber was measured and it was shown that it is possible to image a nonflat object over the entire scanned area using the proposed beam steering method. Furthermore, in in vivo experiments, the intima-media complex was imaged over the entire scanned area at the carotid sinus.

本文言語English
ページ(範囲)4722-4726
ページ数5
ジャーナルJapanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers
45
5 B
DOI
出版ステータスPublished - 2006 5 25

ASJC Scopus subject areas

  • Engineering(all)
  • Physics and Astronomy(all)

フィンガープリント 「Designing beam steering for accurate measurement of intima-media thickness at carotid sinus」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル