Dephasing by a continuous-time random walk process

Daniel M. Packwood, Yoshitaka Tanimura

    研究成果: Article査読

    2 被引用数 (Scopus)

    抄録

    Stochastic treatments of magnetic resonance spectroscopy and optical spectroscopy require evaluations of functions such as exp(i0tQ sds), where t is time, Q s is the value of a stochastic process at time s, and the angular brackets denote ensemble averaging. This paper gives an exact evaluation of these functions for the case where Q is a continuous-time random walk process. The continuous-time random walk describes an environment that undergoes slow steplike changes in time. It also has a well-defined Gaussian limit and so allows for non-Gaussian and Gaussian stochastic dynamics to be studied within a single framework. We apply the results to extract qubit-lattice interaction parameters from dephasing data of P-doped Si semiconductors (data collected elsewhere) and to calculate the two-dimensional spectrum of a three-level harmonic oscillator undergoing random frequency modulations.

    本文言語English
    論文番号011130
    ジャーナルPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
    86
    1
    DOI
    出版ステータスPublished - 2012 7 26

    ASJC Scopus subject areas

    • 統計物理学および非線形物理学
    • 統計学および確率
    • 凝縮系物理学

    フィンガープリント

    「Dephasing by a continuous-time random walk process」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル