Dependence systems with the operator-image exchange property

研究成果: Article査読

1 被引用数 (Scopus)

抄録

An operator on a set S, i.e. an extensive and monotone (but not necessarily idempotent) function on the power set of S, generalizes the familiar notion of closure operator (transitive operator). This is one of several equivalent ways to define a dependence system. In this paper a brief review of dependence system theory precedes a more detailed discussion of some particular properties, e.g. the operator-image exchange property. Once again the duality of operators and resulting duality of properties of dependence systems (defined only when nontransitive operators are admitted), makes it possible to relate properties thus far studied in the context of separate mathematical theories.

本文言語English
ページ(範囲)237-248
ページ数12
ジャーナルDiscrete Mathematics
133
1-3
DOI
出版ステータスPublished - 1994 10 15
外部発表はい

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Discrete Mathematics and Combinatorics

フィンガープリント 「Dependence systems with the operator-image exchange property」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル