Degradation of tungsten monoblock divertor under cyclic high heat flux loading

Shuhei Nogami, Michitoshi Toyota, Wenhai Guan, Akira Hasegawa, Yoshio Ueda

研究成果: Article査読

17 被引用数 (Scopus)


The degradation behavior of the ITER divertor under the cyclic high heat flux loading has been varied in the previous studies, which would be induced by the intrinsic difference in the thermo-mechanical properties of each pure W material. Therefore, the experimental characterization of the thermo-mechanical properties of the W materials and the numerical structural analysis using these data are necessary to clarify the degradation mechanism and the prediction of the fracture scenario and lifetime. In this study, the degradation behavior of the pure W monoblock divertor mockup during the cyclic high heat flux loading test at 20 MW/m2 was evaluated and the macro-crack formation mechanism was discussed based on the structural analysis. The macro-crack formation of the divertor mockup in the present study could occur due to a complexed low temperature cleavage fracture accompanied by the plastic deformation under cyclic loading. The fatigue, especially the low temperature fatigue with plastic deformation, could be a mechanism factor for the macro-crack formation. However, further study considering the thermo-mechanical fatigue and the effect of the low temperature plastic deformation is necessary to quantitatively evaluate the macro-crack formation mechanism by the fatigue.

ジャーナルFusion Engineering and Design
出版ステータスPublished - 2017 7

ASJC Scopus subject areas

  • 土木構造工学
  • 原子力エネルギーおよび原子力工学
  • 材料科学(全般)
  • 機械工学


「Degradation of tungsten monoblock divertor under cyclic high heat flux loading」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。