Deformation Quantizations of the Poisson Algebra of Laurent Polynomials

Hideki Omori, Yoshiaki Maeda, Naoya Miyazaki, Akira Yoshioka

    研究成果: Article査読

    6 被引用数 (Scopus)

    抄録

    It is well known that the Moyal bracket gives a unique deformation quantization of the canonical phase space ℝ2n up to equivalence. In his presentation of an interesting deformation quantization of the Poisson algebra of Laurent polynomials, Ovsienko discusses the equivalences of deformation quantizations of these algebras. We show that under suitable conditions, deformation quantizations of this algebra are equivalent. Though Ovsienko showed that there exists a deformation quantization of the Poisson algebra of Laurent polynomials which is not equivalent to the Moyal product, this is not correct. We show this equivalence by two methods: a direct construction of the intertwiner via the star exponential and a more standard approach using Hochschild 2-cocycles.

    本文言語English
    ページ(範囲)171-180
    ページ数10
    ジャーナルLetters in Mathematical Physics
    46
    2
    DOI
    出版ステータスPublished - 1998 10 2

    ASJC Scopus subject areas

    • 統計物理学および非線形物理学
    • 数理物理学

    フィンガープリント

    「Deformation Quantizations of the Poisson Algebra of Laurent Polynomials」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル